530 research outputs found

    Gap equation in scalar field theory at finite temperature

    Full text link
    We investigate the two-loop gap equation for the thermal mass of hot massless g2Ï•4g^2\phi^4 theory and find that the gap equation itself has a non-zero finite imaginary part. This indicates that it is not possible to find the real thermal mass as a solution of the gap equation beyond g2g^2 order in perturbation theory. We have solved the gap equation and obtain the real and the imaginary part of the thermal mass which are correct up to g4g^4 order in perturbation theory.Comment: 13 pages, Latex with axodraw, Minor corrections, Appendix adde

    Putting competing orders in their place near the Mott transition

    Get PDF
    We describe the localization transition of superfluids on two-dimensional lattices into commensurate Mott insulators with average particle density p/q (p, q relatively prime integers) per lattice site. For bosons on the square lattice, we argue that the superfluid has at least q degenerate species of vortices which transform under a projective representation of the square lattice space group (a PSG). The formation of a single vortex condensate produces the Mott insulator, which is required by the PSG to have density wave order at wavelengths of q/n lattice sites (n integer) along the principle axes; such a second-order transition is forbidden in the Landau-Ginzburg-Wilson framework. We also discuss the superfluid-insulator transition in the direct boson representation, and find that an interpretation of the quantum criticality in terms of deconfined fractionalized bosons is only permitted at special values of q for which a permutative representation of the PSG exists. We argue (and demonstrate in detail in a companion paper: L. Balents et al., cond-mat/0409470) that our results apply essentially unchanged to electronic systems with short-range pairing, with the PSG determined by the particle density of Cooper pairs. We also describe the effect of static impurities in the superfluid: the impurities locally break the degeneracy between the q vortex species, and this induces density wave order near each vortex. We suggest that such a theory offers an appealing rationale for the local density of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM studies of the vortex lattice of BSCCO, and allows a unified description of the nucleation of density wave order in zero and finite magnetic fields. We note signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added new appendix and clarifying remarks; (v4) corrected typo

    Competing orders II: the doped quantum dimer model

    Get PDF
    We study the phases of doped spin S=1/2 quantum antiferromagnets on the square lattice, as they evolve from paramagnetic Mott insulators with valence bond solid (VBS) order at zero doping, to superconductors at moderate doping. The interplay between density wave/VBS order and superconductivity is efficiently described by the quantum dimer model, which acts as an effective theory for the total spin S=0 sector. We extend the dimer model to include fermionic S=1/2 excitations, and show that its mean-field, static gauge field saddle points have projective symmetries (PSGs) similar to those of `slave' particle U(1) and SU(2) gauge theories. We account for the non-perturbative effects of gauge fluctuations by a duality mapping of the S=0 dimer model. The dual theory of vortices has a PSG identical to that found in a previous paper (L. Balents et al., cond-mat/0408329) by a duality analysis of bosons on the square lattice. The previous theory therefore also describes fluctuations across superconducting, supersolid and Mott insulating phases of the present electronic model. Finally, with the aim of describing neutron scattering experiments, we present a phenomenological model for collective S=1 excitations and their coupling to superflow and density wave fluctuations.Comment: 22 pages, 10 figures; part I is cond-mat/0408329; (v2) changed title and added clarification

    Constraining mass of the graviton with GW170817

    Get PDF
    We consider the massive graviton phenomenological model based on the graviton's dispersion terms included into phase of gravitational wave's waveform. Such model was already considered in many works but it was based on a single leading-order dispersion term only. Here we derive a relation between relativistic gravitons emission and absorption time intervals computed up to O(γ−6){\cal O}(\gamma^{-6}), where γ\gamma is the Lorentz factor. Including the dispersion terms into the phase of gravitational wave's waveform results in two non-GR parameters of the 1st1^{st} and the −2nd-2^{nd} post-Newtonian orders whose posteriors are used to put a constraint on the graviton's rest mass. We use the TaylorF2 waveform model to analyse the event GW170817 and report the following 95%95\%-confidence upper bounds on the graviton's rest mass: mgLow Spin≤1.305×10−54m^{Low\,Spin}_{g}\leq1.305\times10^{-54}g and mgHigh Spin≤2.996×10−54m^{High\,Spin}_{g}\leq2.996\times10^{-54}g for the high and low spin priors

    Mistakes can stabilise the dynamics of rock-paper-scissors games

    Get PDF
    A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium
    • …
    corecore